Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.922
Filtrar
1.
Nat Commun ; 15(1): 246, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172096

RESUMO

Members of the low-density lipoprotein receptor (LDLR) family, including LDLRAD3, VLDLR, and ApoER2, were recently described as entry factors for different alphaviruses. However, based on studies with gene edited cells and knockout mice, blockade or abrogation of these receptors does not fully inhibit alphavirus infection, indicating the existence of additional uncharacterized entry factors. Here, we perform a CRISPR-Cas9 genome-wide loss-of-function screen in mouse neuronal cells with a chimeric alphavirus expressing the Eastern equine encephalitis virus (EEEV) structural proteins and identify LDLR as a candidate receptor. Expression of LDLR on the surface of neuronal or non-neuronal cells facilitates binding and infection of EEEV, Western equine encephalitis virus, and Semliki Forest virus. Domain mapping and binding studies reveal a low-affinity interaction with LA domain 3 (LA3) that can be enhanced by concatenation of LA3 repeats. Soluble decoy proteins with multiple LA3 repeats inhibit EEEV infection in cell culture and in mice. Our results establish LDLR as a low-affinity receptor for multiple alphaviruses and highlight a possible path for developing inhibitors that could mitigate infection and disease.


Assuntos
Infecções por Alphavirus , Alphavirus , Vírus da Encefalite Equina do Leste , Cavalos , Animais , Camundongos , Alphavirus/genética , Vírus da Encefalite Equina do Leste/genética , Vírus da Floresta de Semliki/genética , Lipoproteínas LDL
2.
J Med Virol ; 96(1): e29376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235850

RESUMO

Semliki Forest virus (SFV) viral replicon particles (VRPs) have been frequently used in various animal models and clinical trials. Chimeric replicon particles offer different advantages because of their unique biological properties. We here constructed a novel three-plasmid packaging system for chimeric SFV/SIN VRPs. The capsid and envelope of SIN structural proteins were generated using two-helper plasmids separately, and the SFV replicon contained the SFV replicase gene, packaging signal of SIN, subgenomic promoter followed by the exogenous gene, and 3' UTR of SIN. The chimeric VRPs carried luciferase or eGFP as reporter genes. The fluorescence and electron microscopy results revealed that chimeric VRPs were successfully packaged. The yield of the purified chimeric VRPs was approximately 2.5 times that of the SFV VRPs (1.38 × 107 TU/ml vs. 5.41 × 106 TU/ml) (p < 0.01). Furthermore, chimeric VRPs could be stored stably at 4°C for at least 60 days. Animal experiments revealed that mice immunized with chimeric VRPs (luciferase) had stronger luciferase expression than those immunized with equivalent amount of SFV VRPs (luciferase) (p < 0.01), and successfully expressed luciferase for approximately 12 days. Additionally, the chimeric VRPs expressed the RBD of SARS-CoV-2 efficiently and induced robust RBD-specific antibody responses in mice. In conclusion, the chimeric VRPs constructed here met the requirements of a gene delivery tool for vaccine development and cancer therapy.


Assuntos
Vírus da Floresta de Semliki , Vírus Sindbis , Camundongos , Animais , Vírus da Floresta de Semliki/genética , Vírus Sindbis/genética , Plasmídeos/genética , Replicon , Luciferases/genética , Vetores Genéticos
3.
Nat Commun ; 15(1): 622, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245515

RESUMO

Alphaviruses are arboviruses transmitted by mosquitoes and are pathogenic to humans and livestock, causing a substantial public health burden. So far, several receptors have been identified for alphavirus entry; however, they cannot explain the broad host range and tissue tropism of certain alphaviruses, such as Getah virus (GETV), indicating the existence of additional receptors. Here we identify the evolutionarily conserved low-density lipoprotein receptor (LDLR) as a new cell entry factor for GETV, Semliki Forest virus (SFV), Ross River virus (RRV) and Bebaru virus (BEBV). Ectopic expression of LDLR facilitates cellular binding and internalization of GETV, which is mediated by the interaction between the E2-E1 spike of GETV and the ligand-binding domain (LBD) of LDLR. Antibodies against LBD block GETV infection in cultured cells. In addition, the GST-LBD fusion protein inhibits GETV infection both in vitro and in vivo. Notably, we identify the key amino acids in LDLR-LBD that played a crucial role in viral entry; specific mutations in the CR4 and CR5 domain of LDLR-LBD reduce viral entry to cells by more than 20-fold. These findings suggest that targeting the LDLR-LBD could be a potential strategy for the development of antivirals against multiple alphaviruses.


Assuntos
Infecções por Alphavirus , Alphavirus , Culicidae , Animais , Humanos , Alphavirus/genética , Internalização do Vírus , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Infecções por Alphavirus/genética
4.
Virol Sin ; 38(4): 585-594, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390870

RESUMO

Alphaviruses, which contain a variety of mosquito-borne pathogens, are important pathogens of emerging/re-emerging infectious diseases and potential biological weapons. Currently, no specific antiviral drugs are available for the treatment of alphaviruses infection. For most highly pathogenic alphaviruses are classified as risk group-3 agents, the requirement of biosafety level 3 (BSL-3) facilities limits the live virus-based antiviral study. To facilitate the antiviral development of alphaviruses, we developed a high throughput screening (HTS) platform based on a recombinant Semliki Forest virus (SFV) which can be manipulated in BSL-2 laboratory. Using the reverse genetics approach, the recombinant SFV and SFV reporter virus expressing eGFP (SFV-eGFP) were successfully rescued. The SFV-eGFP reporter virus exhibited robust eGFP expression and remained relatively stable after four passages in BHK-21 â€‹cells. Using a broad-spectrum alphavirus inhibitor ribavirin, we demonstrated that the SFV-eGFP can be used as an effective tool for antiviral study. The SFV-eGFP reporter virus-based HTS assay in a 96-well format was then established and optimized with a robust Z' score. A section of reference compounds that inhibit highly pathogenic alphaviruses were used to validate that the SFV-eGFP reporter virus-based HTS assay enables rapid screening of potent broad-spectrum inhibitors of alphaviruses. This assay provides a safe and convenient platform for antiviral study of alphaviruses.


Assuntos
Alphavirus , Animais , Alphavirus/genética , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Genes Reporter , Ensaios de Triagem em Larga Escala , Linhagem Celular , Replicação Viral
5.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298266

RESUMO

African swine fever virus (ASFV) causes a devastating viral hemorrhagic disease in domestic pigs and Eurasian wild boars, posing a foremost threat to the swine industry and pig farming. The development of an effective vaccine is urgently needed, but has been hampered by the lack of an in-depth, mechanistic understanding of the host immune response to ASFV infection and the induction of protective immunity. In this study, we report that immunization of pigs with Semliki Forest Virus (SFV) replicon-based vaccine candidates expressing ASFV p30, p54, and CD2v, as well as their ubiquitin-fused derivatives, elicits T cell differentiation and expansion, promoting specific T cell and humoral immunity. Due to significant variations in the individual non-inbred pigs in response to the vaccination, a personalized analysis was conducted. Using integrated analysis of differentially expressed genes (DEGs), Venn, KEGG and WGCNA, Toll-like receptor, C-type lectin receptor, IL17 receptor, NOD-like receptor and nucleic acid sensor-mediated signaling pathways were demonstrated to be positively correlated to the antigen-stimulated antibody production and inversely correlated to the IFN-γ secreting cell counts in peripheral blood mononuclear cells (PBMCs). An up-regulation of CIQA, CIQB, CIQC, C4BPA, SOSC3, S100A8 and S100A9, and down-regulation of CTLA4, CXCL2, CXCL8, FOS, RGS1, EGR1 and SNAI1 are general in the innate immune response post-the second boost. This study reveals that pattern recognition receptors TLR4, DHX58/DDX58 and ZBP1, and chemokines CXCL2, CXCL8 and CXCL10 may play important roles in regulating this vaccination-stimulated adaptive immune response.


Assuntos
Vírus da Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Vírus da Floresta de Semliki , Imunidade Humoral , Leucócitos Mononucleares , Sus scrofa
6.
Cell ; 186(10): 2208-2218.e15, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098345

RESUMO

Semliki Forest virus (SFV) is an alphavirus that uses the very-low-density lipoprotein receptor (VLDLR) as a receptor during infection of its vertebrate hosts and insect vectors. Herein, we used cryoelectron microscopy to study the structure of SFV in complex with VLDLR. We found that VLDLR binds multiple E1-DIII sites of SFV through its membrane-distal LDLR class A (LA) repeats. Among the LA repeats of the VLDLR, LA3 has the best binding affinity to SFV. The high-resolution structure shows that LA3 binds SFV E1-DIII through a small surface area of 378 Å2, with the main interactions at the interface involving salt bridges. Compared with the binding of single LA3s, consecutive LA repeats around LA3 promote synergistic binding to SFV, during which the LAs undergo a rotation, allowing simultaneous key interactions at multiple E1-DIII sites on the virion and enabling the binding of VLDLRs from divergent host species to SFV.


Assuntos
Receptores de LDL , Vírus da Floresta de Semliki , Alphavirus/metabolismo , Microscopia Crioeletrônica , Vírus da Floresta de Semliki/metabolismo , Vírus da Floresta de Semliki/ultraestrutura , Receptores de LDL/metabolismo , Receptores de LDL/ultraestrutura , Receptores Virais/metabolismo , Receptores Virais/ultraestrutura
7.
Cell Rep ; 42(5): 112441, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37104090

RESUMO

RNA interference (RNAi) is a well-established antiviral immunity. However, for mammalian somatic cells, antiviral RNAi becomes evident only when viral suppressors of RNAi (VSRs) are disabled by mutations or VSR-targeting drugs, thereby limiting its scope as a mammalian immunity. We find that a wild-type alphavirus, Semliki Forest virus (SFV), triggers the Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs) in both mammalian somatic cells and adult mice. These SFV-vsiRNAs are located at a particular region within the 5' terminus of the SFV genome, Argonaute loaded, and active in conferring effective anti-SFV activity. Sindbis virus, another alphavirus, also induces vsiRNA production in mammalian somatic cells. Moreover, treatment with enoxacin, an RNAi enhancer, inhibits SFV replication dependent on RNAi response in vitro and in vivo and protects mice from SFV-induced neuropathogenesis and lethality. These findings show that alphaviruses trigger the production of active vsiRNA in mammalian somatic cells, highlighting the functional importance and therapeutic potential of antiviral RNAi in mammals.


Assuntos
Infecções por Alphavirus , Antivirais , Animais , Camundongos , Interferência de RNA , Linhagem Celular , RNA Interferente Pequeno/genética , Vírus da Floresta de Semliki/genética , Vírus Sindbis/genética , Mamíferos/genética , Replicação Viral
8.
Cancer Lett ; 561: 216139, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001752

RESUMO

Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for anti-PD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Vírus da Floresta de Semliki/genética , Anticorpos de Domínio Único/genética , Receptor de Morte Celular Programada 1/metabolismo
9.
Viruses ; 15(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851650

RESUMO

Culex spp. mosquitoes are important vectors of viruses, such as West Nile virus, Eastern equine encephalitis virus and Rift valley fever virus. However, their interactions with innate antiviral immunity, especially RNA interference (RNAi), are not well known. Most research on RNAi pathways in mosquitoes is focused on the tropical vector mosquito Aedes aegypti. Here, we investigated the production of arbovirus-specific small RNAs in Cx. quinquefasciatus-derived HSU cells. Furthermore, by silencing RNAi-related proteins, we investigated the antiviral role of these proteins for two different arboviruses: Semliki Forest virus (SFV) and Bunyamwera orthobunyavirus (BUNV). Our results showed an expansion of Ago2 and Piwi6 in Cx. quinquefasciatus compared to Ae. aegypti. While silencing Ago2a and Ago2b increased BUNV replication, only Ago2b showed antiviral activity against SFV. Our results suggest differences in the function of Cx. quinquefasciatus and Ae. aegypti RNAi proteins and highlight the virus-specific function of these proteins in Cx. quinquefasciatus.


Assuntos
Aedes , Culex , Cavalos , Animais , Culex/genética , Interferência de RNA , Mosquitos Vetores/genética , Aedes/genética , Antivirais/farmacologia , Vírus da Floresta de Semliki
10.
Immunol Cell Biol ; 101(4): 333-344, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702633

RESUMO

Central nervous system virus infections are a major cause of morbidity and mortality worldwide and a significant global public health concern. As in many tissues, inflammation and immune responses in the brain, despite their protective roles, can also be harmful. Control of brain inflammation is important in many neurological diseases from encephalitis to multiple sclerosis and neurogenerative disease. The suppressors of cytokine signaling (SOCS) proteins are a key mechanism controlling inflammatory and immune responses across all tissues including the brain. Using a mouse model system, we demonstrate that lack of SOCS4 results in changes in the pathogenesis and clinical outcome of a neurotropic virus infection. Relative to wild-type mice, SOCS4-deficient mice showed accelerated clearance of virus from the brain, lower levels of persisting viral RNA in the brain, increased neuroinflammation and more severe neuropathology. We conclude that, in the mouse brain, SOCS4 is a vital regulator of antiviral immunity that mediates the critical balance between immunopathology and virus persistence.


Assuntos
Citocinas , Encefalite , Proteínas Supressoras da Sinalização de Citocina , Animais , Camundongos , Citocinas/imunologia , Encefalite/imunologia , Encefalite/virologia , Imunidade , Vírus da Floresta de Semliki , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
11.
Iran Biomed J ; 26(4): 269-78, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35468712

RESUMO

Background: Self-amplifying mRNA is the next-generation vaccine platform with the potential advantages in efficacy and speed of development against infectious diseases and cancer. The main aim was to present optimized and rapid methods for Semliki Forest virus (SFV)-PD self-amplifying mRNA (SAM) preparation, its packaging, and titer determination. These protocols are provided for producing and harvesting the high yields of virus replicon particle (VRP)-packaged SAM for vaccine studies. Methods: pSFV-PD-EGFP plasmid was linearized and subjected to in vitro transcription. Different concentrations of SFV-PD SAM were first transfected into human embryonic kidney 293 cells (HEK-293) and baby hamster kidney cell line 21 (BHK-21) cell lines, and EGFP expression at different time points was evaluated by fluorescent microscopy. Replicon particle packaging was achieved by co-transfection of SFV-PD SAM and pSFV-Helper2 RNA into BHK-21 cells. The VRPs were concentrated using ultrafiltration with 100 kDa cut-off. The titers of replicon particles were determined by reverse transcription quantitative real-time PCR (RT-qPCR). Results: In vitro transcribed SAM encoding EGFP was successfully transfected and expressed in HEK-293 and BHK-21 cell lines. Higher levels of EGFP expression was observed in BHK-21 compared to HEK-293 cells showing more stable protein overexpression and VRP packaging. Using ultrafiltration, the high yields of purified SFV-PD-EGFP particles were rapidly obtained with only minor loss of replicon particles. Accurate and rapid titer determination of replication-deficient particles was achieved by RT-qPCR. Conclusion: Using optimized methods for SAM transfection, VRP packaging, and concentration, high yields of SFV-PD VRPs could be produced and purified. The RT-qPCR demonstrated to be an accurate and rapid method for titer determination of replication deficient VRPs.


Assuntos
Vetores Genéticos , Vírus da Floresta de Semliki , Animais , Cricetinae , Células HEK293 , Humanos , RNA Mensageiro , Transfecção , Vacinas Sintéticas , Vacinas de mRNA
12.
PLoS One ; 17(2): e0263853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213606

RESUMO

The Semliki Forest Virus (SFV) is an RNA virus with a positive-strand that belongs to the Togaviridae family's Alphavirus genus. An epidemic was observed among French troops stationed in the Central African Republic, most likely caused by the SFV virus. The two transmembrane proteins El and E2 and the peripheral protein E3 make up the viral spike protein. The virus binds to the host cell and is internalized via endocytosis; endosome acidification causes the E1/E2 heterodimer to dissociate and the E1 subunits to trimerize. Lupenone was evaluated against the E1 spike protein of SFV in this study based on state-of-the-art cheminformatics approaches, including molecular docking, molecular dynamics simulation, and binding free energy calculation. The molecular docking study envisaged major interactions of Lupenone with binding cavity residues involved non-bonded van der Waal's and Pi-alkyl interactions. Molecular dynamic simulation of a time scale 200 ns corroborated interaction pattern with molecular docking studies between Lupenone and E1 spike protein. Nevertheless, Lupenone intearcation with the E1 spike protein conforming into a stable complex substantiated by free energy landscape (FEL), PCA analysis. Free energy decomposition of the binding cavity resdiues of E1 spike protein also ensured the efficient non-bonded van der Waal's interaction contributing most energy to interact with the Lupenone. Therefore, Lupenone interacted strongly at the active site conforming into higher structural stability throughout the dynamic evolution of the complex. Thus, this study perhaps comprehend the efficiency of Lupenone as lead molecule against SFV E1 spike protein for future therapeutic purpose.


Assuntos
Simulação de Acoplamento Molecular , Vírus da Floresta de Semliki/química , Triterpenos/química , Proteínas Virais de Fusão/química
13.
PLoS Pathog ; 18(1): e1010202, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990484

RESUMO

The exogenous small interfering RNA (exo-siRNA) pathway is a key antiviral mechanism in the Aedes aegypti mosquito, a widely distributed vector of human-pathogenic arboviruses. This pathway is induced by virus-derived double-stranded RNAs (dsRNA) that are cleaved by the ribonuclease Dicer 2 (Dcr2) into predominantly 21 nucleotide (nt) virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs are used by the effector protein Argonaute 2 within the RNA-induced silencing complex to cleave target viral RNA. Dcr2 contains several domains crucial for its activities, including helicase and RNase III domains. In Drosophila melanogaster Dcr2, the helicase domain has been associated with binding to dsRNA with blunt-ended termini and a processive siRNA production mechanism, while the platform-PAZ domains bind dsRNA with 3' overhangs and subsequent distributive siRNA production. Here we analyzed the contributions of the helicase and RNase III domains in Ae. aegypti Dcr2 to antiviral activity and to the exo-siRNA pathway. Conserved amino acids in the helicase and RNase III domains were identified to investigate Dcr2 antiviral activity in an Ae. aegypti-derived Dcr2 knockout cell line by reporter assays and infection with mosquito-borne Semliki Forest virus (Togaviridae, Alphavirus). Functionally relevant amino acids were found to be conserved in haplotype Dcr2 sequences from field-derived Ae. aegypti across different continents. The helicase and RNase III domains were critical for silencing activity and 21 nt vsiRNA production, with RNase III domain activity alone determined to be insufficient for antiviral activity. Analysis of 21 nt vsiRNA sequences (produced by functional Dcr2) to assess the distribution and phasing along the viral genome revealed diverse yet highly consistent vsiRNA pools, with predominantly short or long sequence overlaps including 19 nt overlaps (the latter representing most likely true Dcr2 cleavage products). Combined with the importance of the Dcr2 helicase domain, this suggests that the majority of 21 nt vsiRNAs originate by processive cleavage. This study sheds new light on Ae. aegypti Dcr2 functions and properties in this important arbovirus vector species.


Assuntos
Aedes/imunologia , Aedes/virologia , Infecções por Alphavirus/imunologia , Ribonuclease III/imunologia , Aedes/genética , Animais , Análise Mutacional de DNA , Mosquitos Vetores/virologia , RNA Interferente Pequeno/imunologia , RNA Viral/imunologia , Ribonuclease III/genética , Vírus da Floresta de Semliki
14.
Antiviral Res ; 197: 105223, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856248

RESUMO

Repurposing drugs is a promising strategy to identify therapeutic interventions against novel and re-emerging viruses. Posaconazole is an antifungal drug used to treat invasive aspergillosis and candidiasis. Recently, posaconazole and its structural analog, itraconazole were shown to inhibit replication of multiple viruses by modifying intracellular cholesterol homeostasis. Here, we show that posaconazole inhibits replication of the alphaviruses Semliki Forest virus (SFV), Sindbis virus and chikungunya virus with EC50 values ranging from 1.4 µM to 9.5 µM. Posaconazole treatment led to a significant reduction of virus entry in an assay using a temperature-sensitive SFV mutant, but time-of-addition and RNA transfection assays indicated that posaconazole also inhibits post-entry stages of the viral replication cycle. Virus replication in the presence of posaconazole was partially rescued by the addition of exogenous cholesterol. A transferrin uptake assay revealed that posaconazole considerably slowed down cellular endocytosis. A single point mutation in the SFV E2 glycoprotein, H255R, provided partial resistance to posaconazole as well as to methyl-ß-cyclodextrin, corroborating the effect of posaconazole on cholesterol and viral entry. Our results indicate that posaconazole inhibits multiple steps of the alphavirus replication cycle and broaden the spectrum of viruses that can be targeted in vitro by posaconazole, which could be further explored as a therapeutic agent against emerging viruses.


Assuntos
Alphavirus/efeitos dos fármacos , Antivirais/farmacologia , Reposicionamento de Medicamentos/métodos , Triazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Alphavirus/classificação , Animais , Linhagem Celular , Vírus Chikungunya/efeitos dos fármacos , Chlorocebus aethiops , Cricetinae , Endocitose/efeitos dos fármacos , Humanos , Vírus da Floresta de Semliki/efeitos dos fármacos , Vírus Sindbis/efeitos dos fármacos , Células Vero , Internalização do Vírus/efeitos dos fármacos
15.
Nature ; 602(7897): 475-480, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929721

RESUMO

Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly conserved across species. Although multiple alphavirus receptors have been described1-3, most are not shared among vertebrate and invertebrate hosts. Here we identify the very low-density lipoprotein receptor (VLDLR) as a receptor for the prototypic alphavirus Semliki forest virus. We show that the E2 and E1 glycoproteins (E2-E1) of Semliki forest virus, eastern equine encephalitis virus and Sindbis virus interact with the ligand-binding domains (LBDs) of VLDLR and apolipoprotein E receptor 2 (ApoER2), two closely related receptors. Ectopic expression of either protein facilitates cellular attachment, and internalization of virus-like particles, a VLDLR LBD-Fc fusion protein or a ligand-binding antagonist block Semliki forest virus E2-E1-mediated infection of human and mouse neurons in culture. The administration of a VLDLR LBD-Fc fusion protein has protective activity against rapidly fatal Semliki forest virus infection in mouse neonates. We further show that invertebrate receptor orthologues from mosquitoes and worms can serve as functional alphavirus receptors. We propose that the ability of some alphaviruses to infect a wide range of hosts is a result of their engagement of evolutionarily conserved lipoprotein receptors and contributes to their pathogenesis.


Assuntos
Mosquitos Vetores , Vírus da Floresta de Semliki , Animais , Proteínas Relacionadas a Receptor de LDL , Ligantes , Camundongos , Receptores de LDL , Vírus da Floresta de Semliki/metabolismo , Vírus Sindbis/fisiologia
16.
Biomaterials ; 279: 121226, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736150

RESUMO

This study describes an efficient eukaryotic expression system (pJHL204) built into the Salmonella delivery system to enhance the essential efficacy and effectiveness of conventional DNA therapy. The expression system utilizes RNA-dependent RNA polymerase activity (RdRp) of Semiliki Forest Virus attributing to dramatic antigen expression by cytoplasmic mRNA amplification. Functional characterization of the pJHL204 by in vitro and in vivo transfection studies revealed the improved expression of mRNA at least 150 folds than the RdRp mutant plasmid under in vitro conditions. Using green fluorescence protein (GFP) and mCherry as bait proteins this system was extensively characterized for plasmid delivery capacity, antigen expression, and safety using in vivo and in vitro models by employing flow cytometry, fluorescence microscopy, and immunohistochemical staining. Employment of Salmonella as a carrier significantly extends plasmid in vivo survivability and prolongs the effective duration until the elimination of the Salmonella carrier strain in the host. The strategy can be easily adapted for P2A connected multiple antigen delivery in a single vector system due to the significantly high cargo capacity of Salmonella. A mouse challenge study was carried out utilizing P2A connected H1N1 hemagglutinin (HA) and neuraminidase (NA) via the Salmonella carrier strain JOL2500 significantly reduced viral activity and protected mice against the H1N1 challenge and demonstrates potential to redefine in vivo DNA therapy as a reliable and safe system to treat human diseases using useful microbes like Salmonella.


Assuntos
Terapia Genética , Vírus da Influenza A Subtipo H1N1 , Salmonella typhimurium , Vírus da Floresta de Semliki , Animais , Eucariotos , Proteínas de Fluorescência Verde , Camundongos , RNA Polimerase Dependente de RNA , Salmonella typhimurium/genética , Vírus da Floresta de Semliki/genética
17.
Virol Sin ; 36(6): 1465-1474, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34374926

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. As an emerging virus, CHIKV imposes a threat to public health. Currently, there are no vaccines or antivirals available for the prevention of CHIKV infection. Lycorine, an alkaloid from Amaryllidaceae plants, has antiviral activity against a number of viruses such as coronavirus, flavivirus and enterovirus. In this study, we found that lycorine could inhibit CHIKV in cell culture at a concentration of 10 µmol/L without apparent cytotoxicity. In addition, it exhibited broad-spectrum anti-alphavirus activity, including Sindbis virus (SINV), Semliki Forest virus (SFV), and Venezuelan equine encephalomyelitis virus (VEEV). The time of addition studies indicated that lycorine functions at an early post-entry stage of CHIKV life cycle. The results based on two different CHIKV replicons provided further evidence that lycorine exerts its antiviral activity mainly by inhibiting CHIKV translation. Overall, our study extends the antiviral spectrum of lycorine.


Assuntos
Alphavirus/efeitos dos fármacos , Alcaloides de Amaryllidaceae/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Fenantridinas/farmacologia , Replicação Viral , Alphavirus/fisiologia , Animais , Linhagem Celular , Vírus Chikungunya/fisiologia , Vírus da Floresta de Semliki , Vírus Sindbis
18.
Viruses ; 13(8)2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452382

RESUMO

Alphaviruses are small enveloped viruses with positive-sense RNA genomes. During infection, the alphavirus capsid protein (Cp) selectively packages and assembles with the viral genomic RNA to form the nucleocapsid core, a process critical to the production of infectious virus. Prior studies of the alphavirus Semliki Forest virus (SFV) showed that packaging and assembly are promoted by Cp binding to multiple high affinity sites on the genomic RNA. Here, we developed an in vitro Cp binding assay based on fluorescently labeled RNA oligos. We used this assay to explore the RNA sequence and structure requirements for Cp binding to site #1, the top binding site identified on the genomic RNA during all stages of virus assembly. Our results identify a stem-loop structure that promotes specific binding of the SFV Cp to site #1 RNA. This structure is also recognized by the Cps of the related alphaviruses chikungunya virus and Ross River virus.


Assuntos
Alphavirus/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Genoma Viral/fisiologia , Sequências Repetidas Invertidas/genética , RNA Viral/metabolismo , Alphavirus/metabolismo , Sítios de Ligação , Capsídeo/metabolismo , Linhagem Celular , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Genoma Viral/genética , Sequências Repetidas Invertidas/fisiologia , Ligação Proteica , RNA Viral/genética , Motivos de Ligação ao RNA , Vírus do Rio Ross/genética , Vírus do Rio Ross/metabolismo , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Montagem de Vírus
19.
J Virol ; 95(20): e0079021, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346765

RESUMO

Rabies is a fatal zoonosis that causes encephalitis in mammals, and vaccination is the most effective method to control and eliminate rabies. Virus-like vesicles (VLVs), which are characterized as infectious, self-propagating membrane-enveloped particles composed of only Semliki Forest virus (SFV) replicase and vesicular stomatitis virus glycoprotein (VSV-G), have been proven safe and efficient as vaccine candidates. However, previous studies showed that VLVs containing rabies virus glycoprotein (RABV-G) grew at relatively low titers in cells, impeding their potential use as a rabies vaccine. In this study, we constructed novel VLVs by transfection of a mutant SFV RNA replicon encoding RABV-G. We found that these VLVs could self-propagate efficiently in cell culture and could evolve to high titers (approximately 108 focus-forming units [FFU]/ml) by extensive passaging 25 times in BHK-21 cells. Furthermore, we found that the evolved amino acid changes in SFV nonstructural protein 1 (nsP1) at positions 470 and 482 was critical for this high-titer phenotype. Remarkably, VLVs could induce robust type I interferon (IFN) expression in BV2 cells and were highly sensitive to IFN-α. We found that direct inoculation of VLVs into the mouse brain caused reduced body weight loss, mortality, and neuroinflammation compared with the RABV vaccine strain. Finally, it could induce increased generation of germinal center (GC) B cells, plasma cells (PCs), and virus-neutralizing antibodies (VNAs), as well as provide protection against virulent RABV challenge in immunized mice. This study demonstrated that VLVs containing RABV-G could proliferate in cells and were highly evolvable, revealing the feasibility of developing an economic, safe, and efficacious rabies vaccine. IMPORTANCE VLVs have been shown to represent a more versatile and superior vaccine platform. In previous studies, VLVs containing the Semliki Forest virus replicase (SFV nsP1 to nsP4) and rabies virus glycoprotein (RABV-G) grew to relatively low titers in cells. In our study, we not only succeeded in generating VLVs that proliferate in cells and stably express RABV-G, but the VLVs that evolved grew to higher titers, reaching 108 FFU/ml. We also found that nucleic acid changes at positions 470 and 482 in nsP1 were vital for this high-titer phenotype. Moreover, the VLVs that evolved in our studies were highly attenuated in mice, induced potent immunity, and protected mice from lethal RABV infection. Collectively, our study showed that high titers of VLVs containing RABV-G were achieved, demonstrating that these VLVs could be an economical, safe, and efficacious rabies vaccine candidate.


Assuntos
Vacina Antirrábica/imunologia , Raiva/imunologia , Vacinação/métodos , Animais , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Modelos Animais de Doenças , Feminino , Engenharia Genética/métodos , Centro Germinativo/imunologia , Glicoproteínas/genética , Imunização/métodos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Raiva/metabolismo , Vacina Antirrábica/metabolismo , Vacina Antirrábica/farmacologia , Vírus da Raiva/imunologia , Vírus da Floresta de Semliki/imunologia , Vesiculovirus/genética , Proteínas Virais/genética
20.
J Virol ; 95(20): e0097321, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319778

RESUMO

Alphaviruses (family Togaviridae) include both human pathogens such as chikungunya virus (CHIKV) and Sindbis virus (SINV) and model viruses such as Semliki Forest virus (SFV). The alphavirus positive-strand RNA genome is translated into nonstructural (ns) polyprotein(s) that are precursors for four nonstructural proteins (nsPs). The three-dimensional structures of nsP2 and the N-terminal 2/3 of nsP3 reveal that these proteins consist of several domains. Cleavage of the ns-polyprotein is performed by the strictly regulated protease activity of the nsP2 region. Processing results in the formation of a replicase complex that can be considered a network of functional modules. These modules work cooperatively and should perform the same task for each alphavirus. To investigate functional interactions between replicase components, we generated chimeras using the SFV genome as a backbone. The functional modules corresponding to different parts of nsP2 and nsP3 were swapped with their counterparts from CHIKV and SINV. Although some chimeras were nonfunctional, viruses harboring the CHIKV N-terminal domain of nsP2 or any domain of nsP3 were viable. Viruses harboring the protease part of nsP2, the full-length nsP2 of CHIKV, or the nsP3 macrodomain of SINV required adaptive mutations for functionality. Seven mutations that considerably improved the infectivity of the corresponding chimeric genomes affected functionally important hot spots recurrently highlighted in previous alphavirus studies. These data indicate that alphaviruses utilize a rather limited set of strategies to survive and adapt. Furthermore, functional analysis revealed that the disturbance of processing was the main defect resulting from chimeric alterations within the ns-polyprotein. IMPORTANCE Alphaviruses cause debilitating symptoms and have caused massive outbreaks. There are currently no approved antivirals or vaccines for treating these infections. Understanding the functions of alphavirus replicase proteins (nsPs) provides valuable information for both antiviral drug and vaccine development. The nsPs of all alphaviruses consist of similar functional modules; however, to what extent these are independent in functionality and thus interchangeable among homologous viruses is largely unknown. Homologous domain swapping was used to study the functioning of modules from nsP2 and nsP3 of other alphaviruses in the context of Semliki Forest virus. Most of the introduced substitutions resulted in defects in the processing of replicase precursors that were typically compensated by adaptive mutations that mapped to determinants of polyprotein processing. Understanding the principles of virus survival strategies and identifying hot spot mutations that permit virus adaptation highlight a route to the rapid development of attenuated viruses as potential live vaccine candidates.


Assuntos
Adaptação Biológica/genética , Alphavirus/genética , Vírus da Floresta de Semliki/genética , Linhagem Celular , Vírus Chikungunya/genética , Quimera/genética , Quimera/metabolismo , Vírus de DNA/genética , Humanos , Mutação/genética , Poliproteínas/metabolismo , RNA Viral/metabolismo , Vírus Sindbis/genética , Proteínas não Estruturais Virais/genética , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...